Multi-Step-Ahead Combination Forecasting of Wind Speed Using Artificial Neural Networks
نویسندگان
چکیده
Wind speed plays a very important role in the scheduling of power systems and dynamic control of wind turbine. Wind speed forecasting has become one of the most important issue for wind energy conversion recently. Adaptive and reliable methods and techniques for wind speed forecasting are urgently needed in view of its stochastic nature that varies from time to time and from site to site. Back Propagation (BP) algorithm-based neural network, which is a commonly computational intelligence method, has been widely used in forecasting fields. But it does have some deficiencies and uncertainties, for example, the hidden nodes of BP directly affect the network’s generalization ability and accuracy, but there is not yet an effective theory to determine the number of hidden nodes. In order to solve the problem of BP network, a combination forecasting model with differently weighed BP networks is proposed in this study. Wind speed data collected from a New Zealand wind power plant is used for experiment research. Simulations show that the results of combination forecasting method is better than those of only one BP network.
منابع مشابه
Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کاملMulti-Step-Ahead Prediction of Stock Price Using a New Architecture of Neural Networks
Modelling and forecasting Stock market is a challenging task for economists and engineers since it has a dynamic structure and nonlinear characteristic. This nonlinearity affects the efficiency of the price characteristics. Using an Artificial Neural Network (ANN) is a proper way to model this nonlinearity and it has been used successfully in one-step-ahead and multi-step-ahead prediction of di...
متن کاملForecasting and Sensitivity Analysis of Monthly Evaporation from Siah Bisheh Dam Reservoir using Artificial neural Networks combined with Genetic Algorithm
Evaporation process, the main component of the water cycle in nature, is essential in agricultural studies, hydrology and meteorology, the operation of reservoirs, irrigation and drainage systems, irrigation scheduling and management of water resources. Various methods have been presented for estimating evaporation from free surface including water budget method, evaporation from pan and experi...
متن کاملDay-Ahead Wind Power Forecasting Using a Two-Stage Hybrid Modeling Approach Based on SCADA and Meteorological Information, and Evaluating the Impact of Input-Data Dependency on Forecasting Accuracy
The power generated by wind generators is usually associated with uncertainties, due to the intermittency of wind speed and other weather variables. This creates a big challenge for transmission system operators (TSOs) and distribution system operators (DSOs) in terms of connecting, controlling and managing power networks with high-penetration wind energy. Hence, in these power networks, accura...
متن کاملShort-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach
Accurate wind speed forecasting is becoming increasingly important to improve and optimize renewable wind power generation. Particularly, reliable short-term wind speed prediction can enable model predictive control of wind turbines and real-time optimization of wind farm operation. However, this task remains challenging due to the strong stochastic nature and dynamic uncertainty of wind speed....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013